A

CPIJR

gt‘uanuiggkhl.\)lgxlpﬁmli Career Point International Journal of Research (CPIJR)

©2022 CPIJR | Volume 3 I Issue 4 | ISSN: 2583-1895
July-September 2025 | DOI: https://doi.org/10.5281/zenodo.17383079

A Review paper on Serverless Web Applications: Benefits and Challenges
in Cloud Computing

Kashish Rangwani', Ms. Shalini Chawla’

'Student (BCA), School of Computer Application & Technology, Career Point
University, Kota (Raj.), India
? Assistant Professor, School of Computer Application & Technology, Career Point
University, Kota (Raj.), India

Abstract

The emergence of serverless computing has significantly transformed the development and
deployment process of modern web applications. Serverless architecture, a cloud computing
execution model where the cloud provider dynamically manages the allocation of machine
resources, eliminates the need for traditional server management by developers. This model,
often implemented through Function-as-a-Service (FaaS) platforms such as AWS Lambda,
Azure Functions, and Google Cloud Functions, provides automatic scaling, high availability,
and a pay-as-you-go pricing model, making it particularly attractive for startups and agile
development teams.

This review paper explores how serverless web applications operate within cloud ecosystems
and evaluates the benefits that have made them increasingly popular among developers and
enterprises. These advantages include reduced operational complexity, rapid deployment
cycles, cost efficiency, and improved scalability. Alongside these strengths, the paper also
examines the key challenges that accompany serverless computing, such as cold start latency,
vendor lock-in, limited debugging capabilities, execution time limits, and concerns regarding
security and privacy.

By studying current literature, real-world use cases, and technological trends, this paper aims
to provide a balanced perspective on the effectiveness of serverless architectures in solving
modern web application development problems. The paper also identifies gaps in current
research and discusses future opportunities for enhancing serverless technologies. As cloud
computing continues to evolve, understanding serverless systems is critical for building

efficient, resilient, and scalable applications in the digital era.

184

https://doi.org/10.5281/zenodo.17383079

A

CPIJR

gt‘uanuiggkhl.\)lgxlpﬁmli Career Point International Journal of Research (CPIJR)

©2022 CPIJR | Volume 3 I Issue 4 | ISSN: 2583-1895
July-September 2025 | DOI: https://doi.org/10.5281/zenodo.17383079

Keywords: Serverless Computing, Cloud Computing, Function-as-a-Service (FaaS), Web
Applications, AWS Lambda, Azure Functions, Cold Start, Scalability, Event-driven
Architecture, Vendor Lock-in, Cost Efficiency, Debugging Challenges, Stateless Functions,

Execution Timeout, Security Concerns

Introduction

Serverless computing is a modern cloud-based execution model where application code is
deployed as discrete functions without the need for server provisioning or management. This
model is enabled by cloud providers such as Amazon Web Services (AWS), Microsoft Azure,
and Google Cloud, through platforms like AWS Lambda, Azure Functions, and Google Cloud
Functions. In this architecture, developers write and deploy code that is automatically
triggered by events such as HTTP requests, file uploads, or database changes. The cloud
provider handles infrastructure concerns like resource allocation, load balancing, and scaling.
This approach has transformed how modern web applications are built, deployed, and
maintained, especially for startups, microservices, and real-time services.

While serverless architecture offers significant benefits in terms of cost savings, development
speed, and operational simplicity, it also introduces new challenges. These include cold start
latency, limited control over backend infrastructure, complex debugging, and security
concerns due to external service dependencies. Moreover, many applications become tightly
coupled with specific cloud providers, leading to vendor lock-in. Although serverless
adoption is growing, academic and industry research often focuses more on performance
advantages and less on the limitations or unresolved issues. This report aims to provide a
balanced overview by discussing both the benefits and the challenges that accompany
serverless web applications.

This review focuses on the implementation, advantages, and limitations of serverless web

applications within the broader context of cloud computing.

It aims to:
e Identify the core benefits of adopting serverless architecture for web development
e Explore technical and operational challenges faced in real-world deployments
e Analyse current research and technological trends shaping serverless computing

The PICOS framework applied in this review is as follows:

185

https://doi.org/10.5281/zenodo.17383079

CPR) gt‘uanuiggkhl.\)lgxlpﬁmli Career Point International Journal of Research (CPIJR)

©2022 CPIJR | Volume 3 | Issue 4 | ISSN: 2583-1895
July-September 2025 | DOI: https://doi.org/10.5281/zenodo.17383079
Participants: Cloud-based developers, architects, and organizations using or considering

serverless technologies

Interventions: Use of serverless platforms (FaaS) for building scalable web applications
Comparisons: Serverless vs. traditional cloud and on-premise architectures

Outcomes: Application performance, scalability, cost efficiency, security implications
Study Design: Review and synthesis of recent literature, technical documentation, and

real-world case studies

Review of Literature

Security and Tooling Concerns: Several researchers, such as Shillaker and Pietzuch
(2021), raised concerns about the security of third-party event triggers, insufficient
1solation between functions, and increased attack surfaces in serverless environments.
Others like Eyk et al. (2023) evaluated observability challenges and proposed
improvements in tracing function flows and managing state externally via services
like AWS DynamoDB or Redis.

Modern Enhancements and Use Cases (2022-2024): Recent literature focuses on
extending serverless for broader use cases, including large-scale web applications and
hybrid deployments combining containers with FaaS. McGrath and Brenner (2022)
analyzed debugging, logging, and monitoring in serverless environments and
highlighted the lack of tool integration. Case studies from Netflix, Airbnb, and Coca-
Cola demonstrate real-world implementation of serverless for high-demand
applications, showing benefits in reducing DevOps complexity and operational costs.
Enterprise Adoption and Performance Insights (2019-2021): As serverless
matured, organizations began adopting it for web APIs, real-time analytics, and [oT
backend services. Jonas et al. (2019) from UC Berkeley published a seminal paper,
“Cloud .Their work introduced the idea of “serverless 2.0” to address emerging
bottlenecks.

Platform Comparison and Evaluation (2017-2018): Baldini et al. (2017)
performed one of the first comprehensive comparisons of serverless platforms,
analysing performance, scalability, and pricing across AWS Lambda, Azure
Functions, and IBM Open Whisk. Their findings showed that while serverless models
were ideal for short lived, event-driven tasks, significant variability existed in cold
start times, execution limits, and platform-specific constraints.

186

https://doi.org/10.5281/zenodo.17383079

‘

CPIJR

g[‘m“uigﬁml,ig},ﬁg Career Point International Journal of Research (CPIJR)

©2022 CPIJR | Volume 3 I Issue 4 | ISSN: 2583-1895
July-September 2025 | DOI: https://doi.org/10.5281/zenodo.17383079

Platform Comparison and Evaluation (2017-2018): Baldini et al. (2017)
performed one of the first comprehensive comparisons of serverless platforms,
analysing performance, scalability, and pricing across AWS Lambda, Azure
Functions, and IBM Open Whisk. Their findings showed that while serverless models
were ideal for short lived, event-driven tasks, significant variability existed in cold

start times, execution limits, and platform-specific constraints.

Research Gaps
Despite the growing adoption of serverless computing and its numerous advantages, several
significant research and implementation gaps remain that hinder its full-scale deployment

across diverse industries and applications:

1. Cold Start Latency and Performance Inconsistency

One of the most commonly cited issues in the serverless paradigm is cold start latency—
when a function is invoked after being idle, there is a delay before execution begins due to
container initialization. This affects user experience in latency-sensitive applications like
real-time chats, payment gateways, and 10T systems. While some work has been done to
mitigate this, such as provisioned concurrency in AWS Lambda, consistent solutions across
platforms are still lacking.

2. Vendor Lock-in and Lack of Portability

Most serverless applications are tightly coupled to the APIs, services, and configuration
formats of specific cloud providers. This makes migrating applications between providers
time-consuming and complex. Research on standardizing serverless APIs or creating

platform-independent deployment frameworks is still in the early stages.

3. Limited Tooling for Monitoring, Debugging, and Testing

Traditional debugging and monitoring tools do not translate well to the ephemeral, stateless
environment of serverless functions. Developers often lack visibility into performance

metrics, error logs, and execution flow. While commercial tools like AWS CloudWatch and

187

https://doi.org/10.5281/zenodo.17383079

\

CPIJR

l(v?:t’lmumi E[L{.LKQRI,}SJ; Career Point International Journal of Research (CPIJR)

©2022 CPIJR | Volume 3 | Issue 4 | ISSN: 2583-1895
July-September 2025 | DOI: https://doi.org/10.5281/zenodo.17383079
Azure Monitor exist, comprehensive open-source alternatives and real-time tracing systems

are still limited.

4. Execution Constraints and Stateless Design

Serverless functions typically have execution time limits (e.g., 15 minutes on AWS Lambda)
and must remain stateless. Applications requiring long-term processes, session data, or low-
latency access to stateful storage often struggle with these limitations. This restricts the kinds
of applications that can be effectively built using pure serverless architecture.

5. Security and Compliance Concerns

Serverless applications often rely on third-party APIs, external services, and event-driven
triggers, increasing the attack surface. Research on security models tailored to serverless,
including zero-trust architecture, API throttling, and granular permission management, is still
evolving. Compliance challenges like GDPR and HIPAA also raise questions about data
handling and function-level access control.

Objectives of Research

The primary objective of this research is to explore the role, effectiveness, and limitations of
serverless web applications in the context of modern cloud computing. As organizations
increasingly move toward cloud-native solutions, understanding the full potential and
drawbacks of serverless architecture is essential for developers, architects, and business

decision-makers. The specific objectives of this review are as follows:

1. To Analyse the Core Benefits of Serverless Architecture

To evaluate how serverless computing enhances scalability, reduces infrastructure costs,

improves development speed, and simplifies application deployment in cloud environments.

2. To Identify and Examine the Key Challenges in Serverless Computing

To study the limitations associated with serverless systems, such as cold starts, vendor lock-
in, limited execution time, and the complexities of monitoring and debugging in stateless

environments.

188

https://doi.org/10.5281/zenodo.17383079

A

CPIJR

gt‘uanuiggkhl.\)lgxlpﬁmli Career Point International Journal of Research (CPIJR)

©2022 CPIJR | Volume 3 | Issue 4 | ISSN: 2583-1895
July-September 2025 | DOI: https://doi.org/10.5281/zenodo.17383079
3. To Review Existing Literature and Technological Trends

To summarize and critically evaluate existing research work, industry reports, and case
studies that discuss the adoption and performance of serverless computing in real-world web
application scenarios.

4. To Explore Real-World Use Cases and Applications

To understand how businesses and developers are using serverless platforms in practice
across industries such as e-commerce, media, 10T, and APIs, and to assess the impact of these

implementations.

5. To Highlight Gaps and Suggest Future Research Directions

To identify under-researched areas in the field of serverless computing and propose future
research opportunities that can help improve its efficiency, security, and usability for a

broader range of applications.

Research Methodology: -

This study adopts a qualitative, review-based methodology to systematically examine the
benefits and challenges of serverless web applications in cloud computing. The methodology
involves collecting, analysing, and synthesizing existing literature, technical documentation,
and real-world use cases to derive insights into the current state and future potential of

serverless architectures.

1. Literature Review

A comprehensive review of academic publications, industry whitepapers, and cloud provider
documentation was conducted. The focus was on identifying how serverless computing is
being implemented in web applications and what advantages and limitations are most
frequently cited. Priority was given to research that included technical evaluations,

performance metrics, and user experience data.

2. Source Selection and Data Collection

Databases and Platforms Used:

189

https://doi.org/10.5281/zenodo.17383079

A

CPIJR

gr‘uulmgﬁml.\)t?klkﬁmli Career Point International Journal of Research (CPIJR)

©2022 CPIJR | Volume 3 | Issue 4 | ISSN: 2583-1895
July-September 2025 | DOI: https://doi.org/10.5281/zenodo.17383079
IEEE Xplore, ACM Digital Library, Google Scholar, SpringerLink, ScienceDirect, and

official documentation from AWS, Azure, and Google Cloud.

Keywords for Search:

29 ¢ 99 ¢

“Serverless architecture,” “Function-as-a-Service (FaaS),” “serverless challenges,” “cloud-

2 ¢ 2 ¢

native applications,” “AWS Lambda,” “cold start problem,” “serverless scalability,” and
“vendor lock-in.”
Inclusion Criteria:

e Research papers and articles published between 2015 and 2024

e English language only

e Focused on the use of serverless computing in cloud-based web applications

e Peer-reviewed and/or published by credible academic or industry sources

3. Model Categorization and Analysis

e (lassification by Technology and Provider: Literature was categorized based on the
serverless platform studied (e.g., AWS Lambda, Azure Functions, Google Cloud
Functions).

e Use Case Categorization: Applications were grouped by use case—such as web
hosting, API services, real-time analytics, and backend automation—to analyze
performance and usability patterns.

e Evaluation Parameters: The analysis focused on parameters such as scalability, cost

efficiency, cold start latency, security, and developer experience.

4.Thematic Synthesis Approach

The selected studies were reviewed thematically to draw comparisons between serverless
benefits and limitations. This method enabled a structured understanding of the most
common use cases, platform behaviours, and technical barriers in deploying serverless

applications in a production environment.

Benefits and Challenges of Serverless Web Applications

Aspect Benefits Challenges

190

https://doi.org/10.5281/zenodo.17383079

(}R) CAREER POINT

INTERNATIONAL JOURNAL OF RESEARCH

Career Point International Journal of Research (CPIJR)
©2022 CPIJR | Volume 3 | Issue 4 | ISSN: 2583-1895
July-September 2025 | DOI: https://doi.org/10.5281/zenodo.17383079

Cost Pay-as-you-go pricing | Hidden costs may occur due
reduces infrastructure costs | to overuse of functions or
by charging only for | third-party services.
execution time.

Scalability Automatic scaling based on | Cold starts can affect

demand without manual

configuration.

performance during sudden

spikes or infrequent use.

Development Speed

Faster time to market by

focusing only on writing and

Lack of for

traditional debugging tools

support

deploying code. may slow troubleshooting.
Infrastructure Management No need to manage or |Limited control over the
maintain servers; handled | environment; reliance on

entirely by cloud provider.

provider’s infrastructure.

Availability Built-in high availability and | Service disruptions or
fault tolerance across data | outages from the provider
centers. can affect application

uptime.

Flexibility Easy integration with other | Vendor lock-in due to
cloud services and event | proprietary APIs and

triggers. platform-specific services.
Execution Environment Ideal for short-lived, | Execution time limits (e.g.,

stateless, event-driven | 15 minutes) and stateless

applications. nature restrict use cases.

Security & Compliance

Providers offer basic security

features and role-based

access control.

Increased attack surface;
complex compliance with

GDPR, HIPAA, etc.

Monitoring & Debugging

Logs and metrics tools
available (e.g., CloudWatch,

Azure Monitor).

Difficult to trace issues in

distributed, ephemeral

functions.

191

https://doi.org/10.5281/zenodo.17383079

“N\) CAREER POINT

INTERNATIONAL JOUIAL OF RESEARGH Career Point International Journal of Research (CPIJR)
©2022 CPIJR | Volume 3 | Issue 4 | ISSN: 2583-1895
July-September 2025 | DOI: https://doi.org/10.5281/zenodo.17383079

Discussion

Key Insights

The analysis of serverless web applications highlights a clear shift in how modern software is
being developed and deployed. Serverless architecture offers numerous benefits such as
reduced infrastructure management, dynamic scalability, and cost efficiency. These
advantages make it highly suitable for stateless, event-driven workloads such as APIs,
microservices, background jobs, and real-time data processing.

The adoption of serverless platforms like AWS Lambda, Azure Functions, and Google Cloud

Functions has enabled developers to focus more on core business logic and less on

192

https://doi.org/10.5281/zenodo.17383079

A

CPIJR

gt‘uanuiggkhl.\)lgxlpﬁmli Career Point International Journal of Research (CPIJR)

©2022 CPIJR | Volume 3 | Issue 4 | ISSN: 2583-1895
July-September 2025 | DOI: https://doi.org/10.5281/zenodo.17383079
operational concerns. Furthermore, its automatic scaling capabilities and pay-per-execution

pricing model make it a cost-effective solution for startups and small-to-medium-sized

enterprises.

Current Limitations

However, several challenges continue to limit its universal adoption. Cold start latency
remains one of the most prominent issues, particularly in use cases requiring low-latency
responses, such as financial transactions or voice-enabled interfaces. Additionally, the lack of
state persistence and short execution limits restrict the development of more complex, long-
running applications in a pure serverless model.

Vendor lock-in and platform dependency pose strategic risks for businesses aiming for long-
term flexibility and multi-cloud support. Debugging and monitoring distributed, ephemeral
functions is still a work in progress, with existing tools not offering the same level of control
as in traditional architectures.

Security is another concern. The broader attack surface, along with the use of multiple cloud
services and external event triggers, increases the complexity of securing serverless
applications. Ensuring data privacy and compliance with regulations like GDPR or HIPAA is

challenging due to reduced visibility into the backend infrastructure.

Balancing Innovation and Risk

Despite these limitations, serverless computing is advancing quickly. The concept of
"serverless 2.0" is emerging, with efforts to integrate serverless with containers, improve cold
start times, and offer multi-cloud compatibility. Hybrid architectures are also gaining
popularity, allowing developers to combine the agility of serverless with the flexibility of
containerized environments.

To fully realize the benefits of serverless, developers, researchers, and cloud providers must
collaborate to address its challenges. This includes improving observability, developing
standard frameworks, enhancing portability, and creating robust security protocols tailored to

serverless environments.

Conclusion: -

193

https://doi.org/10.5281/zenodo.17383079

A

CPIJR

gr‘uulmgﬁml.\)t?klkﬁmli Career Point International Journal of Research (CPIJR)

©2022 CPIJR | Volume 3 I Issue 4 | ISSN: 2583-1895
July-September 2025 | DOI: https://doi.org/10.5281/zenodo.17383079

Serverless computing has emerged as a powerful and transformative model in the evolution
of cloud-based web applications. By abstracting infrastructure management and offering
event-driven execution, serverless platforms enable developers to build and deploy
applications with unprecedented speed, flexibility, and cost efficiency. As demonstrated
throughout this review, serverless architectures are particularly beneficial for microservices,
APIs, IoT solutions, and real-time data processing, where dynamic scalability and minimal

operational overhead are critical.

However, the serverless model is not without its challenges. Cold start latency, limited
execution time, stateless design, and vendor lock-in are persistent concerns that can hinder
the performance, portability, and long-term viability of serverless applications. Furthermore,
the lack of standardized debugging tools, complex security considerations, and compliance

requirements pose additional risks in production environments.

Despite these issues, serverless computing continues to evolve rapidly. Ongoing research and
innovation are addressing many of its current shortcomings through hybrid models, multi-
cloud strategies, and improved development tools. Organizations and developers must
therefore evaluate serverless architecture not as a one-size-fits-all solution, but as a strategic

component within a broader application ecosystem.

In conclusion, serverless web applications represent a significant step forward in cloud
computing. When implemented thoughtfully and with an understanding of both its strengths
and limitations, serverless architecture can deliver scalable, efficient, and resilient
applications. Future work should focus on enhancing cross-platform support, mitigating cold
start issues, and strengthening security frameworks to ensure the reliable and responsible

growth of serverless technologies.

194

https://doi.org/10.5281/zenodo.17383079

| CAREER POINT

CPIJR

INTERNATIONAL JOURNAL OF RESEARCH Career Point International Journal of Research (CPIJR)

©2022 CPIJR | Volume 3 I Issue 4 | ISSN: 2583-1895
July-September 2025 | DOI: https://doi.org/10.5281/zenodo.17383079

References: -

10.

Roberts, M. (2016). Serverless Architectures. Retrieved from:

https://martinfowler.com/articles/serverless.html

Jonas, E., Schleier-Smith, J., Sreekanti, V., Tsai, C., Khandelwal, A., Pu, Q., ... &
Stoica, 1. (2019). Cloud Programming Simplified: A Berkeley View on Serverless
Computing. UC Berkeley.

Baldini, 1., Castro, P., Chang, K., Cheng, P., Fink, S., Ishakian, V., ... & Muthusamy,
V. (2017). Serverless Computing: Current Trends and Open Problems. In Proceedings
of the 2017 Workshop on Serverless Computing (WoSC), ACM.

McGrath, G., & Brenner, P. (2022). Serverless Computing: Design, Implementation,

and Performance. Journal of Cloud Computing.

Eyk, E. van, losup, A., Seif, S., & Thommes, M. (2023). Understanding Function-as-

a-Service Platforms: Characteristics and Performance. IEEE Internet Computing.

Shillaker, J., & Pietzuch, P. (2021). Faasm: Lightweight Isolation for Efficient Stateful
Serverless Computing. USENIX Annual Technical Conference.

AWS Lambda Documentation. Available at: https://docs.aws.amazon.com/lambda

Azure Functions Documentation. Available at: https://learn.microsoft.com/en-

us/azure/azure-functions/

Google Cloud Functions. Available at: https://cloud.google.com/functions

Adzic, G., & Chatley, R. (2017). Serverless Computing: Economic and Architectural
Impact. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software

Engineering.

195

https://doi.org/10.5281/zenodo.17383079
https://martinfowler.com/articles/serverless.html
https://docs.aws.amazon.com/lambda
https://learn.microsoft.com/en-us/azure/azure-functions/
https://learn.microsoft.com/en-us/azure/azure-functions/

